NCERT Solutions for Class 7 Maths Chapter 9

Rational Numbers Class 7
Chapter 9 Rational Numbers Exercise 9.1, 9.2 Solutions

Exercise 9.1 : Solutions of Questions on Page Number : 182
Q1 :
List five rational numbers between:
(i) - 1 and 0 (ii) - 2 and - 1
(iii) $\frac{-4}{5}$ and $\frac{-2}{3}$ (iv) $\frac{1}{2}$ and $\frac{2}{3}$

Answer :

(i) -1 and 0
$\frac{-1}{10}, \frac{-1}{20}, \frac{-1}{30}, \frac{-1}{40}, \frac{-1}{50}$
(ii) -2 and -1
$-2=\frac{-12}{6}$ and $-1=\frac{-6}{6}$
Five rational numbers are
$\frac{-11}{6}, \frac{-10}{6}, \frac{-9}{6}, \frac{-8}{6}, \frac{-7}{6}$
(iii) $\frac{-4}{5}$ and $\frac{-2}{3}$
$\frac{-4}{5}=\frac{-4 \times 9}{5 \times 9}=\frac{-36}{45}$ and $\frac{-2}{3}=\frac{-2 \times 15}{3 \times 15}=\frac{-30}{45}$
Five rational numbers are
$\frac{-35}{45}, \frac{-34}{45}, \frac{-33}{45}, \frac{-32}{45}, \frac{-31}{45}$
(iv) $\frac{1}{2}$ and $\frac{2}{3}$
$\frac{1}{2}=\frac{1 \times 18}{2 \times 18}=\frac{18}{36}$ and $\frac{2}{3}=\frac{2 \times 12}{3 \times 12}=\frac{24}{36}$
Five rational numbers are
$\frac{19}{36}, \frac{20}{36}, \frac{21}{36}, \frac{22}{36}, \frac{23}{36}$

Q2 :
Write four more rational numbers in each of the following patterns:
(i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \ldots$
$\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \ldots$
(iii) $\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \ldots$
(iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}, \ldots$

Answer :
(i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20} \ldots$
$\frac{-3}{5}, \frac{-3 \times 2}{5 \times 2}, \frac{-3 \times 3}{5 \times 3}, \frac{-3 \times 4}{5 \times 4} \ldots .$.
It can be observed that the numerator is a multiple of 3 while the denominator is a multiple of 5 and as we increase them further, these multiples are increasing. Therefore, the next four rational numbers in this pattern are
$\frac{-3 \times 5}{5 \times 5}, \frac{-3 \times 6}{5 \times 6}, \frac{-3 \times 7}{5 \times 7}, \frac{-3 \times 8}{5 \times 8} \ldots$
$\frac{-15}{25}, \frac{-18}{30}, \frac{-21}{35}, \frac{-24}{40} \ldots$
(ii)

$$
\begin{aligned}
& \frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12} \ldots \\
& \frac{-1}{4}, \frac{-1 \times 2}{4 \times 2}, \frac{-1 \times 3}{4 \times 3} \ldots
\end{aligned}
$$

The next four rational numbers in this pattern are

$$
\begin{aligned}
& \frac{-1 \times 4}{4 \times 4}, \frac{-1 \times 5}{4 \times 5}, \frac{-1 \times 6}{4 \times 6}, \frac{-1 \times 7}{4 \times 7} \ldots \\
& \frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28} \ldots
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24} \ldots \\
& \frac{-1}{6}, \frac{1 \times 2}{-6 \times 2}, \frac{1 \times 3}{-6 \times 3}, \frac{1 \times 4}{-6 \times 4} \ldots
\end{aligned}
$$

The next four rational numbers in this pattern are

$$
\begin{aligned}
& \frac{1 \times 5}{-6 \times 5}, \frac{1 \times 6}{-6 \times 6}, \frac{1 \times 7}{-6 \times 7}, \frac{1 \times 8}{-6 \times 8} \ldots \\
& \frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48} \ldots
\end{aligned}
$$

(iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9} \ldots$

$$
\frac{-2}{3}, \frac{2}{-3}, \frac{2 \times 2}{-3 \times 2}, \frac{2 \times 3}{-3 \times 3} \ldots
$$

The next four rational numbers in this pattern are

$$
\begin{aligned}
& \frac{2 \times 4}{-3 \times 4}, \frac{2 \times 5}{-3 \times 5}, \frac{2 \times 6}{-3 \times 6}, \frac{2 \times 7}{-3 \times 7} \ldots \\
& \frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21} \ldots
\end{aligned}
$$

Q3:
Give four rational numbers equivalent to:
(i) $\frac{-2}{7}$ (ii) $\frac{5}{-3}$ (iii) $\frac{4}{9}$

Answer :

(i) $\frac{-2}{7}$

Four rational numbers are
$\frac{-2 \times 2}{7 \times 2}, \frac{-2 \times 3}{7 \times 3}, \frac{-2 \times 4}{7 \times 4}, \frac{-2 \times 5}{7 \times 5}$
$\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$
(ii) $\frac{5}{-3}$

Four rational numbers are

$$
\frac{5 \times 2}{-3 \times 2}, \frac{5 \times 3}{-3 \times 3}, \frac{5 \times 4}{-3 \times 4}, \frac{5 \times 5}{-3 \times 5}
$$

$$
\frac{10}{-6}, \frac{15}{-9}, \frac{20}{-12}, \frac{25}{-15}
$$

(iii) $\frac{4}{9}$

Four rational numbers are

$$
\begin{aligned}
& \frac{4 \times 2}{9 \times 2}, \frac{4 \times 3}{9 \times 3}, \frac{4 \times 4}{9 \times 4}, \frac{4 \times 5}{9 \times 5} \\
& \frac{8}{18}, \frac{12}{27}, \frac{16}{36}, \frac{20}{45}
\end{aligned}
$$

Q4
Draw the number line and represent the following rational numbers on it:
(i) $\frac{3}{4}_{\text {(ii) }} \frac{-5}{8}$
(iii) $\frac{-7}{4}$ (iv) $\frac{7}{8}$

Answer :

$\frac{3}{4}$
This fraction represents 3 parts out of 4 equal parts. Therefore, each space between two integers on number line must be divided into 4 equal parts.
$\frac{3}{4}$
can be represented as

$\frac{-5}{8}$
This fraction represents 5 parts out of 8 equal parts. Negative sign represents that it is on the negative side of number line. Therefore, each space between two integers on number line must be divided into 8 equal parts.
$\frac{-5}{8}$
8 can be represented as

(iii) $\frac{-7}{4}=-1 \frac{3}{4}$

This fraction represents 1 full part and 3 parts out of 4 equal parts. Negative sign represents that it is on the negative side of number line. Therefore, each space between two integers on number line must be divided into 4 equal parts.
$\frac{-7}{4}$
can be represented as

(iv) $\frac{7}{8}$

This fraction represents 7 parts out of 8 equal parts. Therefore, each space between two integers on number line must be divided into 8 equal parts.
-7
8 can be represented as

Q5:
The points P, Q, R, S, T, U, A and B on the number line are such that,
$T R=R S=S U$ and $A P=P Q=Q B$. Name the rational numbers represented by P, Q, R and S.

Answer :

Distance between U and $T=1$ unit
It is divided into 3 equal parts.
$T R=R S=S U=\frac{1}{3}$
$R=-1-\frac{1}{3}=-\frac{3}{3}-\frac{1}{3}=\frac{-4}{3}$
$S=-1-\frac{2}{3}=-\frac{3}{3}-\frac{2}{3}=-\frac{5}{3}$
Similarly,
$A B=1$ unit
It is divided into 3 equal parts.
$\mathrm{P}=2+\frac{1}{3}=\frac{6}{3}+\frac{1}{3}=\frac{7}{3}$
$Q=2+\frac{2}{3}=\frac{6}{3}+\frac{2}{3}=\frac{8}{3}$

Q6 :
Which of the following pairs represent the same rational number?
(i) $\frac{-7}{21}$ and $\frac{3}{9}$ (ii) $\frac{-16}{20}$ and $\frac{20}{-25}$ (iii) $\frac{-2}{-3}$ and $\frac{2}{3}$
(iv) $\frac{-3}{5}$ and $\frac{-12}{20}$ (v) $\frac{8}{-5}$ and $\frac{-24}{15}$ (vi) $\frac{1}{3}$ and $\frac{-1}{9}$
(vii) $\frac{-5}{-9}$ and $\frac{5}{-9}$

Answer :

(i) $\frac{-7}{21}$ and $\frac{3}{9}$
$\frac{-7}{21}=\frac{-1}{3}$
$\frac{3}{9}=\frac{1}{3}$
As $\frac{-1}{3} \neq \frac{1}{3}$
(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$
$\frac{-16}{20}=\frac{-4}{5}$
$\frac{-20}{25}=\frac{-4}{5}$
(iii) $\frac{-2}{-3}$ and $\frac{2}{3}$

$$
\frac{-2}{-3}=\frac{2}{3}
$$

(iv) $\frac{-3}{5}$ and $\frac{-12}{20}$

$$
\frac{-12}{20}=\frac{-3}{5}
$$

(v) $\frac{8}{-5}$ and $\frac{-24}{15}$

$$
\begin{aligned}
& \frac{-24}{15}=\frac{-8}{5} \\
& \frac{8}{-5}=\frac{-8}{5}
\end{aligned}
$$

$$
\text { (vi) } \frac{1}{3} \text { and } \frac{-1}{9} \quad \frac{-5}{-9}=\frac{5}{9}
$$

$$
\text { As }^{\frac{1}{3}} \neq \frac{-1}{9}
$$

, therefore, it does not represent same rational numbers.

Therefore, it represents same rational numbers.
, therefore, it does not represent same
(vii) $\frac{-5}{-9}$ and $\frac{5}{-9}$

As $\frac{5}{9} \neq \frac{-5}{9}$, therefore, it does not represent same rational numbers.

Q7 :
Rewrite the following rational numbers in the simplest form:
(i) $\frac{-8}{6}$ (ii) $\frac{25}{45}$
(iii) $\frac{-44}{72}$ (iv) $\frac{-8}{10}$

Answer :
(i) $\frac{-8}{6}=\frac{-4 \times 2}{3 \times 2}=\frac{-4}{3}$
(ii) $\frac{25}{45}=\frac{5 \times 5}{9 \times 5}=\frac{5}{9}$
(iii) $\frac{-44}{72}=\frac{-11 \times 4}{18 \times 4}=\frac{-11}{18}$
(iv) $\frac{-8}{10}=\frac{-4 \times 2}{5 \times 2}=\frac{-4}{5}$

Q8 :
Fill in the boxes with the correct symbol out of $>,<$, and =
(i) $\frac{-5}{7} \square \frac{2}{3}$ (ii) $\frac{-4}{5} \square \frac{-5}{7}$ (iii) $\frac{-7}{8} \square \frac{14}{-16}$
(iv) $\frac{-8}{5} \square \frac{-7}{4}{ }_{\text {(v) }} \frac{1}{-3} \square \frac{-1}{4}$ (vi) $\frac{5}{-11} \square \frac{-5}{11}$
(vii)

Answer :
(i)

$$
\begin{aligned}
& \frac{-5}{7}=\frac{-5 \times 3}{7 \times 3}=\frac{-15}{21} \\
& \frac{2}{3}=\frac{2 \times 7}{3 \times 7}=\frac{14}{21}
\end{aligned}
$$

As $-15<14$,

Therefore,

$$
\frac{-5}{7}<\frac{2}{3}
$$

(ii)
$\frac{-4}{5}=\frac{-4 \times 7}{5 \times 7}=\frac{-28}{35}$
$\frac{-5}{7}=\frac{-5 \times 5}{7 \times 5}=\frac{-25}{35}$
As $-28<-25$
Therefore, $\frac{-4}{5}<\frac{-5}{7}$
(iii) Here, $\frac{14}{-16}=\frac{7 \times 2}{-8 \times 2}=\frac{7}{-8}=\frac{-7}{8}$

Therefore, $\frac{-7}{8}=\frac{14}{-16}$
(iv)
$\frac{-8}{5}=\frac{-8 \times 4}{5 \times 4}=\frac{-32}{20}$
$\frac{-7}{4}=\frac{-7 \times 5}{4 \times 5}=\frac{-35}{20}$
As - $32>-35$,
Therefore, $\frac{-8}{5} \geq \frac{-7}{4}$
(v)
$\frac{-1}{3}=\frac{-1 \times 4}{3 \times 4}=\frac{-4}{12}$
$\frac{-1}{4}=\frac{-1 \times 3}{4 \times 3}=\frac{-3}{12}$
As $-4<-3$,
Therefore, $\frac{-1}{3}<\frac{-1}{4}$
(vi) $\frac{5}{-11} \boxminus \frac{-5}{11}$
(vii)
$0>\frac{-7}{6}$

Q9 :
Which is greater in each of the following?
(i) $\frac{2}{3}, \frac{5}{2}{ }_{\text {(ii) }} \frac{-5}{6}, \frac{-4}{3}$ (iii) $^{\frac{-3}{4}, \frac{2}{-3}}$
(iv) $\frac{-1}{4}, \frac{1}{4}\left(\right.$ (v) $-3 \frac{2}{7},-3 \frac{4}{5}$

Answer:
(i) $\frac{2}{3}, \frac{5}{2}$

By converting these into like fractions,
$\frac{2}{3}=\frac{2 \times 2}{3 \times 2}=\frac{4}{6}$
$\frac{5}{2}=\frac{5 \times 3}{2 \times 3}=\frac{15}{6}$
As $15>4$, therefore, $\frac{5}{2}$ is greater.
(ii) $\frac{-5}{6}, \frac{-4}{3}$
$\frac{-4}{3}=\frac{-4 \times 2}{3 \times 2}=\frac{-8}{6}$
As $-5>-8$, therefore, $\frac{-5}{6}$ is greater.
(iii)
$\frac{-3}{4}, \frac{2}{-3}$
Or, $\frac{-3}{4}, \frac{-2}{3}$
By converting these into like fractions,

$$
\begin{aligned}
& \frac{-3}{4}=\frac{-3 \times 3}{4 \times 3}=\frac{-9}{12} \\
& \frac{-2}{3}=\frac{-2 \times 4}{3 \times 4}=\frac{-8}{12}
\end{aligned}
$$

As $-8>-9$, therefore, $\frac{-2}{3}$ is greater.
(iv) $\frac{-1}{4}, \frac{1}{4}$

$$
\frac{1}{4}>\frac{-1}{4}
$$

$$
-3 \frac{2}{7},-3 \frac{4}{5}
$$

$$
\frac{-23}{7}, \frac{-19}{5}
$$

By converting these into like fractions,

$$
\begin{aligned}
& \frac{-23}{7}=\frac{-23 \times 5}{7 \times 5}=\frac{-115}{35} \\
& \frac{-19}{5}=\frac{-19 \times 7}{5 \times 7}=\frac{-133}{35}
\end{aligned}
$$

As $-115>-133$, therefore, $-3 \frac{2}{7}$ is greater.

Q10 :

Write the following rational numbers in ascending order:
(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$ (ii) $\frac{-1}{3}, \frac{-2}{9}, \frac{-4}{3}$ (iii) $\frac{\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}}{}$

Answer :

(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$

As $-3<-2<-1$,
$\therefore \frac{-3}{5}<\frac{-2}{5}<\frac{-1}{5}$
(ii) $\frac{-1}{3}, \frac{-2}{9}, \frac{-4}{3}$

By converting these into like fractions,
$\frac{-1 \times 3}{3 \times 3}, \frac{-2}{9}, \frac{-4 \times 3}{3 \times 3}$
$\frac{-3}{9}, \frac{-2}{9}, \frac{-12}{9}$

As $-12<-3<-2$,
$\therefore \frac{-4}{3}<\frac{-1}{3}<\frac{-2}{9}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

By converting these into like fractions,
$\frac{-3 \times 4}{7 \times 4}, \frac{-3 \times 14}{2 \times 14}, \frac{-3 \times 7}{4 \times 7}$
$\frac{-12}{28}, \frac{-42}{28}, \frac{-21}{28}$
As $-42<-21<-12$,
$\therefore \frac{-3}{2}<\frac{-3}{4}<\frac{-3}{7}$

Exercise 9.2 : Solutions of Questions on Page Number : 190
Q1 :
Find the sum:
(i) $\frac{4}{5}+\left(\frac{-11}{4}\right)_{\text {(ii) }} \frac{5}{3}+\frac{3}{5}$ (iii) $^{\frac{-9}{10}+\frac{22}{15}}$
(iv) $\frac{-3}{-11}+\frac{5}{9}$ (v) $\frac{-8}{19}+\frac{(-2)}{57}$ (vi) $\frac{-2}{3}+0$
(vii) $-2 \frac{1}{3}+4 \frac{3}{5}$

Answer :
(i) $45+(-114)=45-114=16-5520=-3920$
(ii) $\frac{5}{3}+\frac{3}{5}$
L.C.M of 3 and 5 is 15 .
$\frac{5}{3}+\frac{3}{5}=\frac{5 \times 5}{3 \times 5}+\frac{3 \times 3}{5 \times 3}=\frac{25}{15}+\frac{9}{15}=\frac{25+9}{15}=\frac{34}{15}$
(iii) $\frac{-9}{10}+\frac{22}{15}$
L.C.M of 10 and 15 is 30 .
$\frac{-9}{10}+\frac{22}{15}=\frac{-9 \times 3}{10 \times 3}+\frac{22 \times 2}{15 \times 2}=\frac{-27}{30}+\frac{44}{30}=\frac{-27+44}{30}=\frac{17}{30}$
(iv) $\frac{-3}{-11}+\frac{5}{9}=\frac{3}{11}+\frac{5}{9}$
L.C.M of 11 and 9 is 99 .
$\frac{3}{11}+\frac{5}{9}=\frac{3 \times 9}{11 \times 9}+\frac{5 \times 11}{9 \times 11}=\frac{27}{99}+\frac{55}{99}=\frac{27+55}{99}=\frac{82}{99}$
(v) $\frac{-8}{19}+\frac{(-2)}{57}=-\frac{8}{19}-\frac{2}{57}$
L.C.M of 19 and 57 is 57 .
$-\frac{8}{19}-\frac{2}{57}=-\frac{8 \times 3}{19 \times 3}-\frac{2}{57}=-\frac{24}{57}-\frac{2}{57}=\frac{-24-2}{57}=\frac{-26}{57}$
(vi) $\frac{-2}{3}+0=\frac{-2}{3}$
(vii) $-2 \frac{1}{3}+4 \frac{3}{5}=\frac{-7}{3}+\frac{23}{5}$
L.C.M of 3 and 5 is 15 .
$\frac{-7}{3}+\frac{23}{5}=\frac{-7 \times 5}{3 \times 5}+\frac{23 \times 3}{5 \times 3}=\frac{-35}{15}+\frac{69}{15}=\frac{-35+69}{15}=\frac{34}{15}$

Q2 :
Find
(i) $\frac{7}{24}-\frac{17}{36}{ }_{\text {(ii) }} \frac{5}{63}-\left(\frac{-6}{21}\right)_{\text {(iii) }} \frac{-6}{13}-\left(\frac{-7}{15}\right)$
(iv) $\frac{-3}{8}-\frac{7}{11}{ }_{\text {(v) }}-2 \frac{1}{9}-6$

Answer :
(i) $\frac{7}{24}-\frac{17}{36}$
L.C.M of 24 and 36 is 72 .
$\frac{7}{24}-\frac{17}{36}=\frac{7 \times 3}{24 \times 3}-\frac{17 \times 2}{36 \times 2}=\frac{21}{72}-\frac{34}{72}=\frac{21-34}{72}=\frac{-13}{72}$
(ii) $\frac{5}{63}-\left(\frac{-6}{21}\right)=\frac{5}{63}+\frac{2}{7}$
L.C.M of 63 and 7 is 63.
$\frac{5}{63}+\frac{2}{7}=\frac{5}{63}+\frac{2 \times 9}{7 \times 9}=\frac{5}{63}+\frac{18}{63}=\frac{5+18}{63}=\frac{23}{63}$
(iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)=\frac{-6}{13}+\frac{7}{15}$
L.C.M of 13 and 15 is 195.
$\frac{-6}{13}+\frac{7}{15}=\frac{-6 \times 15}{13 \times 15}+\frac{7 \times 13}{15 \times 13}=\frac{-90}{195}+\frac{91}{195}=\frac{-90+91}{195}=\frac{1}{195}$
(iv) $\frac{-3}{8}-\frac{7}{11}$
L.C.M of 8 and 11 is 88 .

$$
\begin{aligned}
& \frac{-3}{8}-\frac{7}{11}=-\frac{3 \times 11}{8 \times 11}-\frac{7 \times 8}{11 \times 8}=-\frac{33}{88}-\frac{56}{88}=\frac{-33-56}{88}=\frac{-89}{88} \\
& -2 \frac{1}{9}-6=-\frac{19}{9}-\frac{6}{1}
\end{aligned}
$$

L.C.M of 9 and 1 is 9 .

$$
-\frac{19}{9}-\frac{6}{1}=-\frac{19}{9}-\frac{6 \times 9}{1 \times 9}=-\frac{19}{9}-\frac{54}{9}=\frac{-19-54}{9}=\frac{-73}{9}
$$

Q3 :

Find the product:

(i) $\frac{9}{2} \times\left(\frac{-7}{4}\right)$ (ii) $\frac{3}{10} \times(-9)$ (iii) $\frac{-6}{5} \times \frac{9}{11}$
(iv) $\frac{3}{7} \times\left(\frac{-2}{5}\right)_{\text {(v) }} \frac{3}{11} \times \frac{2}{5}\left(\right.$ (vi) $\frac{3}{-5} \times \frac{-5}{3}$

Answer :
(i) $\frac{9}{2} \times\left(\frac{-7}{4}\right)=\frac{9 \times(-7)}{2 \times 4}=\frac{-63}{8}$
(ii) $\frac{3}{10} \times(-9)=\frac{3}{10} \times \frac{(-9)}{1}=\frac{3 \times(-9)}{10 \times 1}=\frac{-27}{10}$
$\frac{3}{7} \times\left(\frac{-2}{5}\right)=\frac{3 \times(-2)}{7 \times 5}=\frac{-6}{35}$
(iii) $\frac{-6}{5} \times \frac{9}{11}=\frac{-6 \times 9}{5 \times 11}=\frac{-54}{55}$
$\frac{3}{11} \times \frac{2}{5}=\frac{3 \times 2}{11 \times 5}=\frac{6}{55}$
(v)
(vi) $\frac{3}{-5} \times \frac{-5}{3}=\frac{3 \times(-5)}{(-5) \times 3}=\frac{-15}{-15}=1$

Q4 :
Find the value of:
(i) $(-4) \div \frac{2}{3}$ (ii) $\frac{-3}{5} \div 2{ }_{\text {(iii) }} \frac{-4}{5} \div(-3)$
(iv) $\frac{-1}{8} \div \frac{3}{4}$ (v) $\frac{-2}{13} \div \frac{1}{7}$ (vi) $\frac{-7}{12} \div\left(\frac{-2}{13}\right)$
(vii) $\frac{3}{13} \div\left(\frac{-4}{65}\right)$

Answer:
(i) $-4 \div \frac{2}{3}=-4 \times \frac{3}{2}=\frac{-12}{2}=-6$
(ii) $\frac{-3}{5} \div 2=\frac{-3}{5} \times \frac{1}{2}=\frac{-3 \times 1}{5 \times 2}=\frac{-3}{10}$
(iii) $\frac{-4}{5} \div(-3)=\frac{-4}{5} \times \frac{1}{-3}=\frac{(-4) \times 1}{5 \times(-3)}=\frac{-4}{-15}=\frac{4}{15}$
(iv) $\frac{-1}{8} \div \frac{3}{4}=\frac{-1}{8} \times \frac{4}{3}=\frac{-1 \times 4}{8 \times 3}=\frac{-4}{24}=-\frac{1}{6}$
(v) $\frac{-2}{13} \div \frac{1}{7}=\frac{-2}{13} \times 7=\frac{-14}{13}$
(vi) $\frac{-7}{12} \div\left(\frac{-2}{13}\right)=\frac{-7}{12} \times \frac{13}{-2}=\frac{(-7) \times 13}{12 \times(-2)}=\frac{-91}{-24}=\frac{91}{24}$
(vii) $\frac{3}{13} \div\left(\frac{-4}{65}\right)=\frac{3}{13} \times \frac{65}{-4}=\frac{3 \times 65}{13 \times(-4)}=\frac{195}{-52}=-\frac{15}{4}$

